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Synopsis 

Adsorption and desorption diffusion time lags are given for some homogeneous hollow cyl- 
inder and spherical shell membrane systems. The treatment relates to a constant diffusion 
coefficient with solution or sorption obeying Henry’s law. Time lags for both “forward” and 
“reverse” flow have been determined and identities between them derived. For the hollow 
cylinder and spherical shell membrane systems considered here, there are only three distin- 
guishable time lags. 

INTRODUCTION 

Since 1920, when the concept of a time lag was first introduced by 
Daynes,l the greater part of time lag theory has been concerned with slab 
membranes. Relatively few studies have dealt with hollow cylindrical mem- 
branes and still fewer with spherical shell membranes. An equation for 
what would now be termed the “outgoing adsorption time was first 
derived for a hollow cylindrical membrane by Barrer,6 who later made the 
corresponding calculation for a spherical shell membrane. A simplified 
form of Barrer’s result for the hollow cylinder was given later by Jaeger.8 
More recently, the corresponding time lags for laminated hollow cylindrical 
systems have been the subject of two investigations in these laboratories.9J0 
To the best of our knowledge, expressions for “adsorption” and “desorption” 
time lags for hollow cylindrical and spherical shell systems are not available 
in the literature. They form the subject matter of this paper. 

FORMULATION OF THE PROBLEMS 

We consider isothermal radial diffusion in a v-dimensional 
membrane9J1J2 where v = 1 corresponds to a slab of unit area, v = 2 to 
a hollow cylinder of unit length, and v = 3 to a spherical shell. 

The membrane is bounded by r = R and r = R2 with R2 > R Transport 
in the direction of increasing r is taken as positive, and the diffusion coef- 
ficient D of diffusant in the membrane is assumed to be constant (i.e., 
independent of concentration C ,  time t, and positional coordinate r). SO- 
lution or sorption within the membrane follows Henry’s law, C = kc;, where 
C denotes the concentration of diffusant within the membrane in equilib- 
rium with gas-phase concentration c i  and k is the solubility or adsorption 
coefficient. Allowance is made for an  initial arbitrary distribution of dif- 
fusant f , ( r )  within the membrane. At time t = 0, diffusant is admitted to 
r = R,, r = R 2 ,  the differing gas-phase concentrations cil, c;, (and hence 
C1 = C ,  = kci, with C ,  # C,) at these boundaries being maintained 
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constant for all t > 0. The differential equation of transport and boundary 
conditions are then 

C(R1, v, t )  = c, t > 0 

C(R2, v, t )  = c2 t > 0 

CALCULATION OF THE TIME LAG AT r = R 
We derive the time lag L(R, v )  at r = R (R, < R \< R2) using the procedure 

originally due to Frisch. 11,13 Steady-state results required in the derivation 
have been given elsewhere12 and will be quoted. 

From eq. (11, subject to the boundary conditions of eq. (2), we obtain 

wheregJ2 

with w1 = 1, w2 = 27r, 0 3  = 47r, and 

so that I l  = (y - XI, I ,  = In  (y/x), and I3 = (l/x) - (l/y). The steady-state 
flux Q (v) through the membrane is given by l2  

Combining eqs. (3) and (51, we have 
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so that 

where Q(R, v, t )  is the quantity of diffusant that has crossed the surface 
at r = R of area o,,ry-l up to time t. For large t, Q(R, v, t )  -, @.,(v)(t - 
L(R, v)), so that from eq. (6) with eq. (5) we obtain 

where’, 

Using eq. (8) and integration by parts, the double integral of eq. (7) is readily 
evaluated and after some rearrangement we obtain 
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Equation (9) enables us to evaluate L(R, v) for the particular C,, C, and 
f,,(r) of interest. Here, we restrict our considerations to two specific initial 
distributions of diffusant: (1) f J r )  = C,, for which 

and (2) f w ( r )  = C1, for which 

Equations (10) and (11) represent considerable simplifications of eq. (9) and, 
in particular, show that the L(R, v) for these two specific initial distributions 
of diffusant within the membrane are independent of C1 and C,. 

ADSORPTION AND DESORPTION TIME LAGS 
The considerations of the previous two sections required C, # C, without 

specifying the relative magnitudes of C1 and C,. We now investigate the 
time lags for transport through the membrane with C, > C2 and C, > C,, 
respectively. For C, > C2, transport of diffusant will occur in the direction 
of increasing r and will be termed “forward flow.” “Reverse flow” (transport 
of diffusant in the direction of decreasing r )  then corresponds to C2 > C1. 
In what follows, the subscripts a and d refer to adsorption and desorption 
conditions, respectively. The four possible arrangements are illustrated in 
Figure 1. Taking forward flow first, L,(R, v) and Ld(R, v )  (Fig. 1) are given 
by eq. (10) and (l l) ,  respectively. In particular, we have 

and 



TIME LAG IN DIFFUSION 

Two important results emerge from eqs. (12) through (15): 

L,(R2, v )  = Ld(R1,  v )  for all w (w = 1,2,3)  

st' adsorption" 

+flow 
IJF;,31 = L(4 L" a F$,?) = lpl 

5 A--I s s 
Fig. 1. Boundary conditions and time lags for the four flow systems. 
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L,(R1, v) = LJR,, v) for v = 1 

but 

L,(R1, v) # Ld(Rz ,  v) for v = 2 and v = 3 (17) 

For reverse flow, (C, > C,, Fig. l c  and d), L,(R, v )  and LJR, v )  are obtained 
from eqs. (11) and (101, respectively. In particular, we have 

and 

v(4 - v)DL,* (R,, v) 

in which the asterisk denotes a quantity associated with reverse flow. 
Straightaway we see from eqs. (18) through (21) that 

and 

Comparison of the time lags for forward and reverse flow given in eqs. (12) 
through (15) and eqs. (16) through (191, respectively, reveals that 
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and 
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(26) 

for all v considered. For v = 1 only, we have 

[see eqs. (17) through (2311. 
Explicit expressions for La@,, v), L,(R1, v), and Ld(Rp, v )  for the hollow 

cylindrical (v = 2) and spherical shell (v = 3) membranes are given in 
Table I. For completeness, the corresponding time lags for the slab mem- 
brane (v = 1) are also tabulated. Expressions for the remaining (five) time 
lags are readily obtained via the equalities of eqs. (24) through (26). 

DISCUSSION 
For brevity we write La(R2,  v) = L,*(R,, v )  = Ld(R1, v )  '= L,*(R1, v)  

U v ) ,  La@,, v) = L,*(Rl, v) Ll(v) and Ld(Rz ,  v )  = L,* (R,, v )  f L,(v). 
The time lags of the last section (and Table I) refer to situations in which, 
at time t = 0, the concentration of diffusant at one boundary is suddenly 
changed while the concentration at the other boundary remains undis- 
turbed. Reference to Figure 1 shows that time lag L(v) is associated in all 
four cases with the boundary undisturbed at t = 0, and the time lags L,(v)  
and L,(v) are associated with boundaries disturbed at t = 0. An interesting 
feature of the analysis is that L , (v) is specifically associated with the bound- 
ary at r = R, and L,(v) is specifically associated with the boundary at 
r = R2. Thus, for the geometrically asymmetric homogeneous hollow cy- 
lindrical and spherical shell membrane systems considered here, there are 
only three distinguishable time lags. In order of magnitude, they are L(v) 
> L1(v) > L,(v) with L(v) > 0, L,(v),  L,(v) < 0. 

Defining the time lag difference, U ( v )  by 

we see (from Fig. 1) that, for all v, 

where 
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[see eqs. (12) through (15) and (18) through (2111. AL(v) is given by3 

where M,(v )  is the membrane diffusant content in the steady state and 
M i ( v )  is the initial value of this content. We can effect forward and reverse 
flow under comparable conditions by taking C1 = CA, C, = CB for forward 
flow and C1 = CB, C, = CA for reverse flow with (in both cases) CA > CB.  
Then, for the two adsorption systems of Figure 1, we have 

where 

and 

From eqs. (28), since L,(v) > L,(v), we have (-1 AL*,(v) > AL,(v). It then 
follows from eqs. (31) that M:(v) > M,(v) .  (The same result follows from 
a consideration of the two desorption systems.) The difference in the steady- 
state diffusant contents (M:(v) - M,(v) ) ,  is readily evaluated from the 
combination of eqs. (5), (281, (29), and (31) and is given by 

For the slab membrane (v = 11, M: (v) = M ,  (v), L,(v)  = L2(v) and there 
are only two distinguishable time lags for the geometrically symmetrical 
homogeneous membrane systems considered. These time lags are well 
known and need no further discussion here. 
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